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Introduction

The theoretical results and Monte-Carlo studies in the area of robustness
have in the main focused on symmetric distributions (Andrews, et al (1972)) or
procedures which are not scale equivariant(which effectively eliminates most
problems due to asymmetry when the number of dimensions in the problem is
fixed). Recently, Huber (1973) and Bickel (1978) have examined situations in
which the asymmetry of errors can lead to quite complicated results. In this
paper we study the effects of asymmetric errors in two very simple situations:
(one and two dimensional) location problems and simple linear regression. We
have focused our attention on estimating the variability of robust point
estimators in these problems.

A major difficulty with considering asymmetric errors has been that location
(intercept) is not uniquely defined. However, asymmetric data do occur and there
are situations where data transformations to achieve symmetry either make no
sense or are not possible. In regression, it might be conjectured that asym-
metry has different effects on intercept and slope (see Section 3); if so,
there will be situations where one might invest much effort in data transforma-
tions, when the parameters of interest are not influenced by the asymmetry. F
This alone seems a good reason for studying asymmetry, but as another example,
in ranking and selection problems, one is often interested in the stochastically
largest population; robust estimators have been proposed in place of the sample
mean for this problem, and a data transformation which achieves symmetry for all
populations may not be possible.

In Section 2, we study the effects of asymmetry of errors for the
one-dimensional location problem, using M-estimates, trimmed means, and an
adaptive trimmed mean due to Hogg (1974). In Section 3, we study M-estimates of

regression. Our major qualitative conclusions are as follows:




(1) The published estimates of variance for M-estimates of location will
be consistently small if the errors are heavily skewed. This problem appears
amenable to solution if a variance estimate suggested by jackknifing is used.

(2) In linear regression, a similar conclusion holds true for the inter-
cept. Theoretical and Monte-Carlo results show that slope parameters are
influenced only negligibly by skewness. Jackknifing for the intercept does not
work as well here, with the variance estimates now being slightly too large.

(3) In the two-sample problem with equal scales, a robust test statistic
can be constructed with a consistent variance estimtate, even if the errors are
asymmetric. This statistic, however, has unknown sensitivity to heteroscedasti-
city of variances.

Location Estimates

In this section we define the location estimates used in the study, state
two Lemmas and give a discussion of expected results. An M-estimator is defined

as a solution to the equation

(2.1) DY, - T)/s) =0,

where Sn is an estimate of scale. In the Monte-Carlo study, we used two func-

tions y defined by

(2.2} P(x) = -p(-x) = max(-2, min(x,2))

(2.3) Y(x) = -p(-x)
= X 0 <X 5_2.25
= 2.25 2.25 <X <3.75
= 2.25 (15-x)/11.25 3.7 x <15
=0 X > 149

| v

The function (2.2) is referred to as Huber's y, while (2.3) is Hampel's {. The

solutions to (2.1) were generated iteratively (Gross (1977)), starting with the




sample median and with two estimates of scale:

(2.4) 8 ™ (median absolute residual)/.6745

1

2 R
(2.5) S (new) ={(n-1) 1§l vIOX, - Tn)/sZn(old))}sgn(old)/a :

%*
where a = E¢ ¥ (Z), the expectation taken under the standard normal distribu-

tion function. Two estimates of the variance of ng T were used, namely
n

2.3 3 .3 2
(2.6) D, (1) = H sT (n-1) jgl VIOX=T)/8,,)/b] , where
. e -1
b, =n jgl VIG=T /800, Ho= 1 e 7o (1-b ) /by
-1 § 2
2.7 D, (i) = 1.08(n-1) jgl uij(vj-rn) , where

Mij = OOGTO/S 0/ (=T ) s

We used the factor 1.08 in Dzn(i) so that the two estimates have approximately
the same value for normal samples in our Monte-Carlo experiment, and we used the
factor H2 in Dln(i) as suggested by Huber (1973).

The variance estimates Dln(i) and DZn(i) are essentially as suggested by

Gross (1977), the first motivated by the asymptotic variance formula for ng Tn
2 o 2
[ o AR () /{ [ v ()AF() ),

appropriate when F is symmetric, the second suggested by the weighted least
squares nature of the iterative estimation procedure. In the general case with
possible asymmetry, the behavior of M-estimates T“ can be summarized by the
following result, for which exact conditions can be generated from the method

of proof of Theorem 1 of Carroll (1978a).




p
Lemma 1. Suppose that for some constants Ti(F)' oi(F) we have that Tn > Ti(F)’

Y . " g
n (sin - oi(P)) = Op(l), and E W((Xl - Ti(F))/oi(F)) = 0. Taking Ti(b) = 0,

oi(F) = 1 (without loss of generality), for ¢ smooth,

-1 3 Ea -1
) VX)) ¢ (- s, B X9t (X)) « Op(n ).

(2.8) (EFO (X‘))T“ = n L

Discussion of Lemma 1

l'he following qualitative considerations emerge from Lemma ] and are
verified in the Monte-Carlo experiment.

(1) If the distribution function F is not symmetric, then, in general,
EpXyu' (X)) # 0 so that Dy, (1) (which is asymptotically correct in the symmetric
case) wi{l typically underestimate the true variance. The same should hold for
D, (i).

n

(2) The bias in Dy, (i) and Dy, (i) should be small for distributions which
are nearly symmetric because T, is a smooth function of the data. The bias will
become large as the degree of asymmetry increases.

(3) When s;, is used as scale, T, should be a particularly smooth function
of F. From Jaeckel (1972), this means that jackknifing will probably be effec-
tive in estimating the variance of T, . As pointed out by Huber (1977, p.26),
such a variance estimate will be more appropriate for T, than for the jackknifed
version of T .

n

We also consider trimmed means and two adaptive versions. Define Un(a)(Ln(u))

as the mean of the largest (smallest) na order statistics. As a measure of tail

length, when na is an integer (true in the situations considered here), Hogg (1974)

proposed

Qn - (Un(.ZO) - Ln(.ZO))/(Un(.SU) - Ln(.SO)).

Then, if m% refers to a m% symmetrically trimmed mean, the Hogg adaptive ostimate

is defined by

HGl = 5% if Q, = 1.81
=108 if 1.81 <Q < 1.87
= 25% if Q, > 1.87




The estimate of an m% trimmed mean is given by Shorack (1974), Huber (1977,
¢q.(10.4)) has shown that this estimate essentially arises from jackknifing the

m% trimmed mean. Calling this variance oz(m%), we define
D(Hogg) = o>(m%) if HGI = mS.
We also consider an estimate suggested by Switzer (1970), defined by

Switzer = m% if oz(m%) is minimum among

02(5%), 0>(10%) and o>(25%).

1
If one assumes that n‘ (Qn - Q(F)) has a limit distribution, it is easy to
obtain the following disturbing result, precise conditions for which could be

given but are omitted.

1
Lemma 2. Suppose Q(F) = 1.81. If F is symmetric about O(F), then n*(HGl - 6(F))
has a non-normal limit distribution. If F is not symmetric, there typically

exists no finite 8 for which n¥(HGI - 6) has a limit distribution.

Sketch of proof. Let Tn(m) be the m% symmetrically trimmed mean with

ng(Tn(m) - 6(m)) having a normal limit distribution. If F is symmetric about

0(F), since Qn is even and Tn(m) is odd, n%(Tn(m) - 0(F)) is asymptotically
independent of nli(Qn - Q(F)). Define

Al = (@ QB Ay = Q> QM) By = (n*(HGI - 0(F) < ],

An n » LS




P(Bl) = P(Alu n Bl) + P(AZn n Bl)
~ P(Aln and n%(Tn(S) - 8(F)) < 2)
+ P(A2n and n%(Tn(IO) - 8(F)) :.z)

123

LPMT,(S) - 8(F)) <2) + P(n*(T,(10) - 6(F) <z)},

verifying the first part of Lemma 2. If F is asymmetric and 6(S5) # 6(10)

(the usual case), for any 6 ,

(2.9)  P(B)) = P(A;, and n*(T (5) - 8(5)) <z + n*(6 - 0(5)))

+ P(A, and n&(Tn(IO) - 8(10)) <z + (0 - 6(10))).

Clearly, no 6 can be chosen so that the right hand side of (2.9) is a probability
distribution. g

Because of Lemma 2 we expect HGl to do very poorly in terms of efficiency
and estimating variance if F is asymmetric and Q(F) =~ 1.81. For the negative
exponential distribution, Q(F) = 1,805, so particular problems might be expected
here.

The location estimates used in the study we report here are given in Table
1. These represent a portion of the results in a larger study which leads to
the same conclusions.

The Monte-Carlo study used a shuffled congruential random number generator
to obtain the uniform random deviates. The Box-Muller algorithm was used to
obtain the standard normal deviates. Due to time and financial considerations,

various sample sizes (500 <N 5_2000) were used, so that we also report standard

errors.




TABLE 1

A description of the location estimates used in the study

Code

M
10%
HG1
Switzer
Hub 11
Hub 22
Hamp 12
Hamp 21
Hub 1J
Hamp 1J
Hub 2J

Sample Mean

10% symmetrically trimmed mean

See text

See text

Huber with Shi and Dnl(l)

Huber with Sh2 and DnZ(z)

Hampel with Shl and Dnz(l)

Hampel with Sh2 and Dnl(z)

Huber jackknife variance estimate with s

1n

Hampel jackknife variance estimate with Sin

Huber jackknife variance estimate with Son




Let Z be a standard normal random variable. While a wide range of sampling
distributions were investigated (both symmetric and asymmetric), the five

presented here are representative.

Type Code
Z N(0,1)
g | '
Z % ,1027 .10N"
) 2
Z+ 502 +SON™
Negative Exponential, mean 1.2§ NE
.50 Exp(2) EXP(2)

al
The second (.10N7) is only slightly skewed and was chosen from a larger set

b >
(Z + .052°, 2 + .252°, EXP(.10Z), EXP(.252Z)) as a reasonable representative of

the class of distributions close to, but not exactly, symmetric. Such data
might arise for example from data transformations which only achieve approx-
imate symmetry.

The sample size is n = 20. If N is the number of Monte-Carlo experiments
and YI,Y,,....Yn the realized value of a location estimator, the (standardized)

Monte-Carlo variance is

bl

The average value of a variance estimate of nsTn is denoted by ﬂ;. Table .

N

» 3

presents the values of o7 and n; and their standard cerrors.




TABLE 2

The first row for each estimator gives the Monte-Carlo variance 02 of the

location estimate and the Monte-Carlo average Gi of the appropriate variance
estimate. The second row consists of standard errors.
N(0,1) .10N° .50N? NE EXP(Z)

2 ~2 2 ~2 2 2 2 A2 2 a2

Code o 0 g g [¢) o o g o] [°)
M 1.03 .99 1.07 1.01 1.50 1.47 1.58 1.55 .10 1.10
| .03 .01 .03 .01 .05 .02 .05 .02 .05 .04
10% 1.09 1.06 1.10 1.07 1.24 1.25 1.31 1.36 251 D2
.03 .01 .03 .01 .04 .02 .04 .02 02 .01
Switzer 1.14 .90 Lo ES .90 157 .93 1.57 1.04 .52 .34
.04 .01 .04 .01 .05 .01 .05 .02 .01 .01
HG1 1.09 .96 0 .97 1.75 1.05 1.63 1.16 .58 o8
.03 .01 .04 .01 .0S .02 .05 .02 .01 .01
Hub 11 1.05 1.01 1.06 .99 1.49 1.08 1.50 1.20 .68 .46
.03 .01 .03 .01 .05 .02 05 .02 03 =01
Hub 22 1.05 1.02 1.07 1.02 1.54 1.21 k.52 1.31 .68 .56
.03 .01 .03 .01 .05 .02 .05 .02 OS> 0 |
Hamp 12 1.04 1.06 1.06 1.07 1.64 1.24 1.54 1.38 Sl 9
.03 .01 .03 .01 .05 .02 .05 .02 .03 .01
Hamp 21 1.05 1.01 1.07 1.00 1.60 1.14 1.54 1.28 .74 .45
.03 .01 .03 A .05 .02 .05 .02 .03 .01
Hub 1J 105 1.01 1.06 1.02 1.49 1.49 LS50 1,62 .68 10
.03 .01 .04 .01 .05 .03 .05 .03 .03 .02
Hamp 1J 1.04 1.01 1.06 1.02 1.64 1.53 1.54 1.57 i .81
.03 .01 .03 .01 .05 .02 .05 .02 .03 .02
Hub 2J 1.05 1.03 1.07 1.05 1.54 1.61 1.52 1.70 .68 i
.03 .01 .03 .01 .05 .05 .05 .05 .03 .03
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Discussion of the results for location estimates

e —a ~ a—

The tabled results confirm our earlier speculations and might be summarized

as tollows:

(1) It is difficult to estimate the variance of either HGI or SWITZER.
Jackknifing will probably not help here as the estimates are not smooth
functionals of the data.

(2) The two commonly used scales (s]“,s,“) lead to similar results.

(3), The two variance estimates D"l(i) and Dnzti) do quite well for N(0,1)
and ,10N-, which are symmetric or nearly so, but are not to be trusted for
heavily skewed data. Either a jackknife or transformtions appear necessary.

(4)  The jackknifed variance estimates are a dramatic improvement on
Dy (1) and Dya(i) . There is no simple pattern to these figures, but generally
the jackknifed variance estimates appear to become more conservative as we pass
trom N(O,1) to EXP(2).

i e AT TSI Y TN A -5 PO

= s—

The optimistic interpretation given here to the use of the jackknife for
variance estimation in robustness of location contrasts with that of Braun
(1975), who concluded that jackknifing and robust estimation do not get along
very well, and that variance estimates obtained from jackknifing are not
reliable. The closest he came to considering our M-estimates was a one-step
M-estimate starting at the median and the median absolute deviations from the
median (MAD, essentially our sln)' We believe that our results are more
tavorable to the jackknife because the statistics we have considered are much
smoother functionals of the data then are one-step M-estimates starting at
(median, MAD), (a conjecture of this type has been made by Gross (1976)),

2 D
because instead of comparing 07 and o; as we do here, he compared (in the
main) lug(Si) to log 02. which is more unstable when “2 w1, and because asymmetry
is unfavorable to (2.6) and (2.7). We used the one-step M-estimate with {

given by (2.2) and starting at (median, MAD/.6745) and obtained the table




T TR v P— "

1
| z 2022 5022 NE EXP(Z)

‘ o 1.06 1.08 1,64 1,5 .58

) n2

V 62 from (2.6) < Tadlll ) RO M A UG

: G2 from jackknife  1.06  1.09 1.90 1.76 .65

Thus, for one-step M-estimates, the jackknife is more unstable than it is with

smoother M-estimates.

Regression

We next investigate regression to see if similar phenomena to those found
in the previous section continue. Our intuition says that, under asymmetry,
the common estimates of variance will be inconsistent for intercept but accep-
table for slope. In this section we sketch a proof confirming this conjecture
and illustrate small sample results with a Monte-Carlo experiment.

The model we consider is (the use of % will become clear later)

n

(3.1) Y, = X §0 + E, 00 (6 § S e (S
where the €, are i.i.d. random variables with EW(CI) = 0 and

x. = (1

X5 X{p +o- xip)' We consider a version of Huber's Proposal 2 (Huber

(1977), p.37), which involves solving the equations

n
-1 g ' 4
(3.2) n igl VY, - x, B/s) =0
< ¥ .3
(3.3) (n - p) '21 V(Y - x; BD/s)) - a.
i=

While we will assume the X; are constants, the first two conditions of Lemma 3

(to follow) are reasonable and may be justificd by quoting results of Maronna




and Yohai (1978). In a subset of their paper, they assume (yl’fl)’ (y2’52)"

is a sample from a distribution function P with Eo, % solving

BV ((y - x B))/og) = a .

Defining g = (y;

i TX BO)/UO, they show essentially that if the €, are inde-

pendent of X, and if B, Sh satisfy (3.2) and (3.3) (the latter with (n - p)

i
&,
replaced by n), then nli(Bn - EO) and nl“‘(sn - 00) are asymptotically normally
distributed.

The proof of our result involves Taylor expansions along the lines of

Carroll (1978a, 1978b) and is omitted to avoid cluttering up the paper with

messy calculations. Recall that our X, are non-stochastic.

Lemma 3. Suppose that

y ¢
ni(g, - 8y = 0, (1)

n‘(sn - 00) = Op(l)

nlxix > v (positive definite)
p M
%oy x +1,0,0,.,.,0) s w
ol
Then, for { sufficiently smooth,
(3.4) (agv - (aja /a)w'w) (B - By)/o,
n
-1 2
=n iZ {x;" vley) - (a/a,)w' (W (ey) - a)}
=]

+ Op(n'l) :




13
where

a, = E EIW'(cl) az = EW'(cl)

a, = 2E € w(cl)w'(cl) a, = 2E w(el)w'(cl) . 8]

In simple linear regression with

. . - ' ol " ~
we obtain that if ﬁé = (Bint’ leope) and En = (Bint’ leope)’ then

Corollary. Under the conditions of Lemma 3, for simple linear regression

(3.5) (B, - Bine)/9
= (a, - (a,a,/a;)) 'n7} ’Z’ {w(e,) - (a,/a,)(WP(e,) - a)} + 0 (a1
3 1%4/%; % M 1'% i P ’
- -1 -1 § 4
(3.6) (leope - leope)/oo = (asvl) n 121 X1 w(ci) i Op(n ). 0

Similar results hold for the general regression problem.

Discussion of Lemma 3. The following conclusions emerge from Lemma 3 (for

large samples) and are partially confirmed for small samples in the Monte-Carlo

experiment to follow.

(1) It can be shown that the representations (2.8) and (3.5) are equiva-
lent when scale is estimated by Son®

(2) The representation (3.6) implies that in large samples, even with
asymmetry

o b S 2
(3.7) leope - leope v Normal (0, uoﬁw (rl)/asvl) *




W———-—W — =

which is precisely the result obtained by Huber (1973) for known scale and p
fixed.

{3) Thus, for fixed p as n becomes large, the asymptotic variance
formulae for B obtained in the syrmetric case with known scale are correct in
general except when applied to the intercept. We expect to experience the same
difficulty in estimating the variance of the intercept that we found in the
previous section.

(4) For estimating the variance of the intercept, the equation (3.0)
shows that ﬁslope is sufficiently smooth for jackknifing.

We constructed a Monte-Carlo experiment for n = 20 in the simple linear

regression model

<
"

1 + 4 X, * €

where the values of x are -.95, -.90,...,.90,.95 and the error distributions
were as in the previous section. There were N=2000 iterations for least
squares and the Huber estimate, and N=1200 iterations for the jackknife. In

A2 A A
Table 2 we present the values of 0;/02 for B and Bint using least squares,

slope

the Huber Proposal 2 with y(x) = max(-2, min(x,2)) and the jackknifed variance

estimate for the Huber Proposal 2. The estimate of variance used is essentially

Dln(:). and if ¥y - (yi - X Eﬂ)/szn,

n b >
D, (2) = llz(n-pfl Y 9°(r.)/b", where
n = j

2 1 ¥
¥ an® ) V' (r;), H =1+ p(1-b)/(bn).
=1

In Table 3 we present the average values é%lope and éint for both least

squares and Proposal 2. We conclude
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(1) The slope estimate éslope is hardly influenced by even large dosages
of asymmetry. It appears relatively unbiased and its variance can be assessed
relatively accurately. In separate Monte-Carlo experiments, we have found that
this phenomena extends to a quadratic regression with uniform design (n=30) and
to the poison-treatment 3x4 design of Box and Cox (1964).

(2) The intercept estimate éint is influenced by asymmetry and standard
variance formulas will tend to underestimate the true variance (in asymmetric
cases) even more than will happen in least squares.

(3) The jackknife appears to be conservative, more so than in the location
case. Hinkley (1977) shows that the jackknife as employed here (the so-called
balanced jackknife) leads in general to a biased variance estimate even in least
squares, unless the design is balanced. In his example, the design is much less
balanced than ours and the behavior of the balanced jackknife much worse.

Further study of his "weighted" jackknife appears necessary, although for this
particular design, our unreported simulation results for the weighted jackknife

are virtually identical to those given here for the usual jackknife.

(4) Consider a two-sample location problem

Yoo ™ W & & . j =1,2 B TR B
ke e T NE
The results of the previous section show that a statistic formed by analogy
with the t-statistic (X replaced by T,(Xy,...,Xp),etc.) will tend to have a
higher type I error than advertised. However, define
(ny + ny)B8p = nyuy + maup, (ng + np)By = na(uy - w2), and

Zi = Yil X; = 1 i= l,...,n1

3™ Yi-nl,z x.l = -nl/nz is= nl L A TN,
Then we have the linear model and, by estimating scale simultaneously through
(3.2) and (3.3), Lemma 3 and Corollary 1 tell us that we can consistently
estimate the variance of the estimate of H] - u2 and hence obtain proper tests.
This of course leads to the usual t-statistic if y(x) = x.

2




R

TABLE 2

~9
The entries are the ratio 0;/02 for the appropriate estimates and sampling
situations.
Estimation

__Method Distribution
-

___N(0,1) .108° .SON" NE % EXP(2)

Bint leope 8int leope Bint leope Bint leope %int leope
Least Squares .98 .98 .96 .98 98 .99 .99 1.00 1.00 1.00
Huber 95 98 .93 .98 .75 .96 .83 .99 .69 .94
Jackknifed
Huber 1.02 1.06 - - 1.07 1.1 - - 2% .18

TABLE 3

The entries are the average values of the parameters over the sampling situations.

The true values are Bint = 1.00, Sslope = .50,
N(0,1)  .10N° .SON° NE EXP(2)
Biny» Least Squares 1.00 1.05 1.00 1.00 1.00
8 Least Squares .49 .49 .48 .48 .48
slope,
8. ., Huber 1.00 .99 .92 .94 .90
int
8 Huber .49 .49 .49 .48 .50

slope’
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